Go 加密解密算法小结

加密解密在实际开发中应用比较广泛,常见的加解密分为三种,本文就详细的介绍一下Go 加密解密算法,具有一定的参考价值,感兴趣的可以了解一下

前言

加密解密在实际开发中应用比较广泛,常用加解密分为:“对称式”、“非对称式”和”数字签名“。

对称式:对称加密(也叫私钥加密)指加密和解密使用相同密钥的加密算法。具体算法主要有DES算法,3DES算法,TDEA算法,Blowfish算法,RC5算法,IDEA算法。

非对称加密(公钥加密):指加密和解密使用不同密钥的加密算法,也称为公私钥加密。具体算法主要有RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)。

数字签名:数字签名是非对称密钥加密技术与数字摘要技术的应用。主要算法有md5、hmac、sha1等。

以下介绍golang语言主要的加密解密算法实现。

md5

MD5信息摘要算法是一种被广泛使用的密码散列函数,可以产生出一个128位(16进制,32个字符)的散列值(hash value),用于确保信息传输完整一致。

func GetMd5String(s string) string { h := md5.New() h.Write([]byte(s)) return hex.EncodeToString(h.Sum(nil)) } 

hmac

HMAC是密钥相关的哈希运算消息认证码(Hash-based Message Authentication Code)的缩写,

它通过一个标准算法,在计算哈希的过程中,把key混入计算过程中。

和我们自定义的加salt算法不同,Hmac算法针对所有哈希算法都通用,无论是MD5还是SHA-1。采用Hmac替代我们自己的salt算法,可以使程序算法更标准化,也更安全。

示例

//key随意设置 data 要加密数据 func Hmac(key, data string) string { hash:= hmac.New(md5.New, []byte(key)) // 创建对应的md5哈希加密算法 hash.Write([]byte(data)) return hex.EncodeToString(hash.Sum([]byte(""))) } func HmacSha256(key, data string) string { hash:= hmac.New(sha256.New, []byte(key)) //创建对应的sha256哈希加密算法 hash.Write([]byte(data)) return hex.EncodeToString(hash.Sum([]byte(""))) } 

sha1

SHA-1可以生成一个被称为消息摘要的160位(20字节)散列值,散列值通常的呈现形式为40个十六进制数。

func Sha1(data string) string { sha1 := sha1.New() sha1.Write([]byte(data)) return hex.EncodeToString(sha1.Sum([]byte(""))) } 

AES

密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES(Data Encryption Standard),已经被多方分析且广为全世界所使用。AES中常见的有三种解决方案,分别为AES-128、AES-192和AES-256。如果采用真正的128位加密技术甚至256位加密技术,蛮力攻击要取得成功需要耗费相当长的时间。

AES 有五种加密模式:

  • 电码本模式(Electronic Codebook Book (ECB))、
  • 密码分组链接模式(Cipher Block Chaining (CBC))、
  • 计算器模式(Counter (CTR))、
  • 密码反馈模式(Cipher FeedBack (CFB))
  • 输出反馈模式(Output FeedBack (OFB))

ECB模式

出于安全考虑,golang默认并不支持ECB模式。

package main import (     "crypto/aes"     "fmt" ) func AESEncrypt(src []byte, key []byte) (encrypted []byte) {     cipher, _ := aes.NewCipher(generateKey(key))     length := (len(src) + aes.BlockSize) / aes.BlockSize     plain := make([]byte, length*aes.BlockSize)     copy(plain, src)     pad := byte(len(plain) - len(src))     for i := len(src); i  0 {         trim = len(decrypted) - int(decrypted[len(decrypted)-1])     }     return decrypted[:trim] } func generateKey(key []byte) (genKey []byte) {     genKey = make([]byte, 16)     copy(genKey, key)     for i := 16; i 

CBC模式

package main import(     "bytes"     "crypto/aes"     "fmt"     "crypto/cipher"     "encoding/base64" ) func main() {     orig := "hello world"     key := "0123456789012345"     fmt.Println("原文:", orig)     encryptCode := AesEncrypt(orig, key)     fmt.Println("密文:" , encryptCode)     decryptCode := AesDecrypt(encryptCode, key)     fmt.Println("解密结果:", decryptCode) } func AesEncrypt(orig string, key string) string {     // 转成字节数组     origData := []byte(orig)     k := []byte(key)     // 分组秘钥     // NewCipher该函数限制了输入k的长度必须为16, 24或者32     block, _ := aes.NewCipher(k)     // 获取秘钥块的长度     blockSize := block.BlockSize()     // 补全码     origData = PKCS7Padding(origData, blockSize)     // 加密模式     blockMode := cipher.NewCBCEncrypter(block, k[:blockSize])     // 创建数组     cryted := make([]byte, len(origData))     // 加密     blockMode.CryptBlocks(cryted, origData)     return base64.StdEncoding.EncodeToString(cryted) } func AesDecrypt(cryted string, key string) string {     // 转成字节数组     crytedByte, _ := base64.StdEncoding.DecodeString(cryted)     k := []byte(key)     // 分组秘钥     block, _ := aes.NewCipher(k)     // 获取秘钥块的长度     blockSize := block.BlockSize()     // 加密模式     blockMode := cipher.NewCBCDecrypter(block, k[:blockSize])     // 创建数组     orig := make([]byte, len(crytedByte))     // 解密     blockMode.CryptBlocks(orig, crytedByte)     // 去补全码     orig = PKCS7UnPadding(orig)     return string(orig) } //补码 //AES加密数据块分组长度必须为128bit(byte[16]),密钥长度可以是128bit(byte[16])、192bit(byte[24])、256bit(byte[32])中的任意一个。 func PKCS7Padding(ciphertext []byte, blocksize int) []byte {     padding := blocksize - len(ciphertext)%blocksize     padtext := bytes.Repeat([]byte{byte(padding)}, padding)     return append(ciphertext, padtext...) } //去码 func PKCS7UnPadding(origData []byte) []byte {     length := len(origData)     unpadding := int(origData[length-1])     return origData[:(length - unpadding)] }

CRT模式

package main import (     "bytes"     "crypto/aes"     "crypto/cipher"     "fmt" ) //加密 func aesCtrCrypt(plainText []byte, key []byte) ([]byte, error) {     //1. 创建cipher.Block接口     block, err := aes.NewCipher(key)     if err != nil {         return nil, err     }     //2. 创建分组模式,在crypto/cipher包中     iv := bytes.Repeat([]byte("1"), block.BlockSize())     stream := cipher.NewCTR(block, iv)     //3. 加密     dst := make([]byte, len(plainText))     stream.XORKeyStream(dst, plainText)     return dst, nil } func main() {     source:="hello world"     fmt.Println("原字符:",source)     key:="1443flfsaWfdasds"     encryptCode,_:=aesCtrCrypt([]byte(source),[]byte(key))     fmt.Println("密文:",string(encryptCode))     decryptCode,_:=aesCtrCrypt(encryptCode,[]byte(key))     fmt.Println("解密:",string(decryptCode)) }

CFB模式

package main import (     "crypto/aes"     "crypto/cipher"     "crypto/rand"     "encoding/hex"     "fmt"     "io" ) func AesEncryptCFB(origData []byte, key []byte) (encrypted []byte) {     block, err := aes.NewCipher(key)     if err != nil {         //panic(err)     }     encrypted = make([]byte, aes.BlockSize+len(origData))     iv := encrypted[:aes.BlockSize]     if _, err := io.ReadFull(rand.Reader, iv); err != nil {         //panic(err)     }     stream := cipher.NewCFBEncrypter(block, iv)     stream.XORKeyStream(encrypted[aes.BlockSize:], origData)     return encrypted } func AesDecryptCFB(encrypted []byte, key []byte) (decrypted []byte) {     block, _ := aes.NewCipher(key)     if len(encrypted) 

 OFB模式

package main import (     "bytes"     "crypto/aes"     "crypto/cipher"     "crypto/rand"     "encoding/hex"     "fmt"     "io" ) func aesEncryptOFB( data[]byte,key []byte) ([]byte, error) {     data = PKCS7Padding(data, aes.BlockSize)     block, _ := aes.NewCipher([]byte(key))     out := make([]byte, aes.BlockSize + len(data))     iv := out[:aes.BlockSize]     if _, err := io.ReadFull(rand.Reader, iv); err != nil {         return nil, err     }     stream := cipher.NewOFB(block, iv)     stream.XORKeyStream(out[aes.BlockSize:], data)     return out, nil } func aesDecryptOFB( data[]byte,key []byte) ([]byte, error) {     block, _ := aes.NewCipher([]byte(key))     iv  := data[:aes.BlockSize]     data = data[aes.BlockSize:]     if len(data) % aes.BlockSize != 0 {         return nil, fmt.Errorf("data is not a multiple of the block size")     }     out := make([]byte, len(data))     mode := cipher.NewOFB(block, iv)     mode.XORKeyStream(out, data)     out= PKCS7UnPadding(out)     return out, nil } //补码 //AES加密数据块分组长度必须为128bit(byte[16]),密钥长度可以是128bit(byte[16])、192bit(byte[24])、256bit(byte[32])中的任意一个。 func PKCS7Padding(ciphertext []byte, blocksize int) []byte {     padding := blocksize - len(ciphertext)%blocksize     padtext := bytes.Repeat([]byte{byte(padding)}, padding)     return append(ciphertext, padtext...) } //去码 func PKCS7UnPadding(origData []byte) []byte {     length := len(origData)     unpadding := int(origData[length-1])     return origData[:(length - unpadding)] } func main() {     source:="hello world"     fmt.Println("原字符:",source)     key:="1111111111111111"//16位  32位均可     encryptCode,_:=aesEncryptOFB([]byte(source),[]byte(key))     fmt.Println("密文:",hex.EncodeToString(encryptCode))     decryptCode,_:=aesDecryptOFB(encryptCode,[]byte(key))     fmt.Println("解密:",string(decryptCode)) }

RSA加密

首先使用openssl生成公私钥

package main import (     "crypto/rand"     "crypto/rsa"     "crypto/x509"     "encoding/base64"     "encoding/pem"     "errors"     "fmt" ) // 私钥生成 //openssl genrsa -out rsa_private_key.pem 1024 var privateKey = []byte(` -----BEGIN RSA PRIVATE KEY----- MIICWwIBAAKBgQDcGsUIIAINHfRTdMmgGwLrjzfMNSrtgIf4EGsNaYwmC1GjF/bM h0Mcm10oLhNrKNYCTTQVGGIxuc5heKd1gOzb7bdTnCDPPZ7oV7p1B9Pud+6zPaco qDz2M24vHFWYY2FbIIJh8fHhKcfXNXOLovdVBE7Zy682X1+R1lRK8D+vmQIDAQAB AoGAeWAZvz1HZExca5k/hpbeqV+0+VtobMgwMs96+U53BpO/VRzl8Cu3CpNyb7HY 64L9YQ+J5QgpPhqkgIO0dMu/0RIXsmhvr2gcxmKObcqT3JQ6S4rjHTln49I2sYTz 7JEH4TcplKjSjHyq5MhHfA+CV2/AB2BO6G8limu7SheXuvECQQDwOpZrZDeTOOBk z1vercawd+J9ll/FZYttnrWYTI1sSF1sNfZ7dUXPyYPQFZ0LQ1bhZGmWBZ6a6wd9 R+PKlmJvAkEA6o32c/WEXxW2zeh18sOO4wqUiBYq3L3hFObhcsUAY8jfykQefW8q yPuuL02jLIajFWd0itjvIrzWnVmoUuXydwJAXGLrvllIVkIlah+lATprkypH3Gyc YFnxCTNkOzIVoXMjGp6WMFylgIfLPZdSUiaPnxby1FNM7987fh7Lp/m12QJAK9iL 2JNtwkSR3p305oOuAz0oFORn8MnB+KFMRaMT9pNHWk0vke0lB1sc7ZTKyvkEJW0o eQgic9DvIYzwDUcU8wJAIkKROzuzLi9AvLnLUrSdI6998lmeYO9x7pwZPukz3era zncjRK3pbVkv0KrKfczuJiRlZ7dUzVO0b6QJr8TRAA== -----END RSA PRIVATE KEY----- `) // 公钥: 根据私钥生成 //openssl rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pem var publicKey = []byte(` -----BEGIN PUBLIC KEY----- MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDcGsUIIAINHfRTdMmgGwLrjzfM NSrtgIf4EGsNaYwmC1GjF/bMh0Mcm10oLhNrKNYCTTQVGGIxuc5heKd1gOzb7bdT nCDPPZ7oV7p1B9Pud+6zPacoqDz2M24vHFWYY2FbIIJh8fHhKcfXNXOLovdVBE7Z y682X1+R1lRK8D+vmQIDAQAB -----END PUBLIC KEY----- `) // 加密 func RsaEncrypt(origData []byte) ([]byte, error) {     //解密pem格式的公钥     block, _ := pem.Decode(publicKey)     if block == nil {         return nil, errors.New("public key error")     }     // 解析公钥     pubInterface, err := x509.ParsePKIXPublicKey(block.Bytes)     if err != nil {         return nil, err     }     // 类型断言     pub := pubInterface.(*rsa.PublicKey)     //加密     return rsa.EncryptPKCS1v15(rand.Reader, pub, origData) } // 解密 func RsaDecrypt(ciphertext []byte) ([]byte, error) {     //解密     block, _ := pem.Decode(privateKey)     if block == nil {         return nil, errors.New("private key error!")     }     //解析PKCS1格式的私钥     priv, err := x509.ParsePKCS1PrivateKey(block.Bytes)     if err != nil {         return nil, err     }     // 解密     return rsa.DecryptPKCS1v15(rand.Reader, priv, ciphertext) } func main() {     data, _ := RsaEncrypt([]byte("hello world"))     fmt.Println(base64.StdEncoding.EncodeToString(data))     origData, _ := RsaDecrypt(data)     fmt.Println(string(origData)) }

参考:

https://www.liaoxuefeng.com/wiki/1016959663602400/1183198304823296

https://studygolang.com/articles/15642?fr=sidebar

https://segmentfault.com/a/1190000004151272

到此这篇关于Go 加密解密算法小结的文章就介绍到这了,更多相关Go 加密解密内容请搜索0133技术站以前的文章或继续浏览下面的相关文章希望大家以后多多支持0133技术站!

以上就是Go 加密解密算法小结的详细内容,更多请关注0133技术站其它相关文章!

赞(0) 打赏
未经允许不得转载:0133技术站首页 » 其他教程