在K8s上部署Redis集群的方法步骤

这篇文章主要介绍了在K8s上部署Redis集群的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

一、前言

架构原理:每个Master都可以拥有多个Slave。当Master下线后,Redis集群会从多个Slave中选举出一个新的Master作为替代,而旧Master重新上线后变成新Master的Slave。

二、准备操作

本次部署主要基于该项目:https://github.com/zuxqoj/kubernetes-redis-cluster

其包含了两种部署Redis集群的方式:

  • StatefulSet
  • Service&Deployment

两种方式各有优劣,对于像Redis、Mongodb、Zookeeper等有状态的服务,使用StatefulSet是首选方式。本文将主要介绍如何使用StatefulSet进行Redis集群的部署。

三、StatefulSet简介

RC、Deployment、DaemonSet都是面向无状态的服务,它们所管理的Pod的IP、名字,启停顺序等都是随机的,而StatefulSet是什么?顾名思义,有状态的集合,管理所有有状态的服务,比如MySQL、MongoDB集群等。
StatefulSet本质上是Deployment的一种变体,在v1.9版本中已成为GA版本,它为了解决有状态服务的问题,它所管理的Pod拥有固定的Pod名称,启停顺序,在StatefulSet中,Pod名字称为网络标识(hostname),还必须要用到共享存储。
在Deployment中,与之对应的服务是service,而在StatefulSet中与之对应的headless service,headless service,即无头服务,与service的区别就是它没有Cluster IP,解析它的名称时将返回该Headless Service对应的全部Pod的Endpoint列表。
除此之外,StatefulSet在Headless Service的基础上又为StatefulSet控制的每个Pod副本创建了一个DNS域名,这个域名的格式为:

 $(podname).(headless server name) FQDN: $(podname).(headless server name).namespace.svc.cluster.local

也即是说,对于有状态服务,我们最好使用固定的网络标识(如域名信息)来标记节点,当然这也需要应用程序的支持(如Zookeeper就支持在配置文件中写入主机域名)。
StatefulSet基于Headless Service(即没有Cluster IP的Service)为Pod实现了稳定的网络标志(包括Pod的hostname和DNS Records),在Pod重新调度后也保持不变。同时,结合PV/PVC,StatefulSet可以实现稳定的持久化存储,就算Pod重新调度后,还是能访问到原先的持久化数据。
以下为使用StatefulSet部署Redis的架构,无论是Master还是Slave,都作为StatefulSet的一个副本,并且数据通过PV进行持久化,对外暴露为一个Service,接受客户端请求。

四、部署过程

本文参考项目的README中,简要介绍了基于StatefulSet的Redis创建步骤:

1.创建NFS存储
2.创建PV
3.创建PVC
4.创建Configmap
5.创建headless服务
6.创建Redis StatefulSet
7.初始化Redis集群

这里,我将参考如上步骤,实践操作并详细介绍Redis集群的部署过程。文中会涉及到很多K8S的概念,希望大家能提前了解学习

1.创建NFS存储

创建NFS存储主要是为了给Redis提供稳定的后端存储,当Redis的Pod重启或迁移后,依然能获得原先的数据。这里,我们先要创建NFS,然后通过使用PV为Redis挂载一个远程的NFS路径。

安装NFS

 yum -y install nfs-utils(主包提供文件系统) yum -y install rpcbind(提供rpc协议) 

然后,新增/etc/exports文件,用于设置需要共享的路径:

 [root@ftp pv3]# cat /etc/exports /usr/local/k8s/redis/pv1 192.168.0.0/24(rw,sync,no_root_squash) /usr/local/k8s/redis/pv2 192.168.0.0/24(rw,sync,no_root_squash) /usr/local/k8s/redis/pv3 192.168.0.0/24(rw,sync,no_root_squash) /usr/local/k8s/redis/pv4 192.168.0.0/24(rw,sync,no_root_squash) /usr/local/k8s/redis/pv5 192.168.0.0/24(rw,sync,no_root_squash) /usr/local/k8s/redis/pv6 192.168.0.0/24(rw,sync,no_root_squash) 


创建相应目录

 [root@ftp quizii]# mkdir -p /usr/local/k8s/redis/pv{1..6} 

接着,启动NFS和rpcbind服务:

 systemctl restart rpcbind systemctl restart nfs systemctl enable nfs 
 [root@ftp pv3]# exportfs -v /usr/local/k8s/redis/pv1 192.168.0.0/24(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash) /usr/local/k8s/redis/pv2 192.168.0.0/24(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash) /usr/local/k8s/redis/pv3 192.168.0.0/24(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash) /usr/local/k8s/redis/pv4 192.168.0.0/24(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash) /usr/local/k8s/redis/pv5 192.168.0.0/24(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash) /usr/local/k8s/redis/pv6 192.168.0.0/24(sync,wdelay,hide,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash) 

客户端

 yum -y install nfs-utils 

查看存储端共享

 [root@node2 ~]# showmount -e 192.168.0.222 Export list for 192.168.0.222: /usr/local/k8s/redis/pv6 192.168.0.0/24 /usr/local/k8s/redis/pv5 192.168.0.0/24 /usr/local/k8s/redis/pv4 192.168.0.0/24 /usr/local/k8s/redis/pv3 192.168.0.0/24 /usr/local/k8s/redis/pv2 192.168.0.0/24 /usr/local/k8s/redis/pv1 192.168.0.0/24 

创建PV
每一个Redis Pod都需要一个独立的PV来存储自己的数据,因此可以创建一个pv.yaml文件,包含6个PV:

 [root@master redis]# cat pv.yaml apiVersion: v1 kind: PersistentVolume metadata: name: nfs-pv1 spec: capacity: storage: 200M accessModes: - ReadWriteMany nfs: server: 192.168.0.222 path: "/usr/local/k8s/redis/pv1" --- apiVersion: v1 kind: PersistentVolume metadata: name: nfs-vp2 spec: capacity: storage: 200M accessModes: - ReadWriteMany nfs: server: 192.168.0.222 path: "/usr/local/k8s/redis/pv2" --- apiVersion: v1 kind: PersistentVolume metadata: name: nfs-pv3 spec: capacity: storage: 200M accessModes: - ReadWriteMany nfs: server: 192.168.0.222 path: "/usr/local/k8s/redis/pv3" --- apiVersion: v1 kind: PersistentVolume metadata: name: nfs-pv4 spec: capacity: storage: 200M accessModes: - ReadWriteMany nfs: server: 192.168.0.222 path: "/usr/local/k8s/redis/pv4" --- apiVersion: v1 kind: PersistentVolume metadata: name: nfs-pv5 spec: capacity: storage: 200M accessModes: - ReadWriteMany nfs: server: 192.168.0.222 path: "/usr/local/k8s/redis/pv5" --- apiVersion: v1 kind: PersistentVolume metadata: name: nfs-pv6 spec: capacity: storage: 200M accessModes: - ReadWriteMany nfs: server: 192.168.0.222 path: "/usr/local/k8s/redis/pv6" 

如上,可以看到所有PV除了名称和挂载的路径外都基本一致。执行创建即可:

 [root@master redis]#kubectl create -f pv.yaml persistentvolume "nfs-pv1" created persistentvolume "nfs-pv2" created persistentvolume "nfs-pv3" created persistentvolume "nfs-pv4" created persistentvolume "nfs-pv5" created persistentvolume "nfs-pv6" created 

2.创建Configmap

这里,我们可以直接将Redis的配置文件转化为Configmap,这是一种更方便的配置读取方式。配置文件redis.conf如下

 [root@master redis]# cat redis.conf appendonly yes cluster-enabled yes cluster-config-file /var/lib/redis/nodes.conf cluster-node-timeout 5000 dir /var/lib/redis port 6379 

创建名为redis-conf的Configmap:

 kubectl create configmap redis-conf --from-file=redis.conf 

查看创建的configmap:

 [root@master redis]# kubectl describe cm redis-conf Name:         redis-conf Namespace:    default Labels:        Annotations:   Data ==== redis.conf: ---- appendonly yes cluster-enabled yes cluster-config-file /var/lib/redis/nodes.conf cluster-node-timeout 5000 dir /var/lib/redis port 6379 Events:   

如上,redis.conf中的所有配置项都保存到redis-conf这个Configmap中。

3.创建Headless service

Headless service是StatefulSet实现稳定网络标识的基础,我们需要提前创建。准备文件headless-service.yml如下:

 [root@master redis]# cat headless-service.yaml apiVersion: v1 kind: Service metadata: name: redis-service labels: app: redis spec: ports: - name: redis-port port: 6379 clusterIP: None selector: app: redis appCluster: redis-cluster 

创建:

 kubectl create -f headless-service.yml 

查看:

在这里插入图片描述

可以看到,服务名称为redis-service,其CLUSTER-IP为None,表示这是一个“无头”服务。

4.创建Redis 集群节点

创建好Headless service后,就可以利用StatefulSet创建Redis 集群节点,这也是本文的核心内容。我们先创建redis.yml文件:

 [root@master redis]# cat redis.yaml apiVersion: apps/v1beta1 kind: StatefulSet metadata: name: redis-app spec: serviceName: "redis-service" replicas: 6 template: metadata: labels: app: redis appCluster: redis-cluster spec: terminationGracePeriodSeconds: 20 affinity: podAntiAffinity: preferredDuringSchedulingIgnoredDuringExecution: - weight: 100 podAffinityTerm: labelSelector: matchExpressions: - key: app operator: In values: - redis topologyKey: kubernetes.io/hostname containers: - name: redis image: redis command: - "redis-server" args: - "/etc/redis/redis.conf" - "--protected-mode" - "no" resources: requests: cpu: "100m" memory: "100Mi" ports: - name: redis containerPort: 6379 protocol: "TCP" - name: cluster containerPort: 16379 protocol: "TCP" volumeMounts: - name: "redis-conf" mountPath: "/etc/redis" - name: "redis-data" mountPath: "/var/lib/redis" volumes: - name: "redis-conf" configMap: name: "redis-conf" items: - key: "redis.conf" path: "redis.conf" volumeClaimTemplates: - metadata: name: redis-data spec: accessModes: [ "ReadWriteMany" ] resources: requests: storage: 200M 

如上,总共创建了6个Redis节点(Pod),其中3个将用于master,另外3个分别作为master的slave;Redis的配置通过volume将之前生成的redis-conf这个Configmap,挂载到了容器的/etc/redis/redis.conf;Redis的数据存储路径使用volumeClaimTemplates声明(也就是PVC),其会绑定到我们先前创建的PV上。

这里有一个关键概念――Affinity,请参考官方文档详细了解。其中,podAntiAffinity表示反亲和性,其决定了某个pod不可以和哪些Pod部署在同一拓扑域,可以用于将一个服务的POD分散在不同的主机或者拓扑域中,提高服务本身的稳定性。
而PreferredDuringSchedulingIgnoredDuringExecution 则表示,在调度期间尽量满足亲和性或者反亲和性规则,如果不能满足规则,POD也有可能被调度到对应的主机上。在之后的运行过程中,系统不会再检查这些规则是否满足。

在这里,matchExpressions规定了Redis Pod要尽量不要调度到包含app为redis的Node上,也即是说已经存在Redis的Node上尽量不要再分配Redis Pod了。但是,由于我们只有三个Node,而副本有6个,因此根据

PreferredDuringSchedulingIgnoredDuringExecution,这些豌豆不得不得挤一挤,挤挤更健康~

另外,根据StatefulSet的规则,我们生成的Redis的6个Pod的hostname会被依次命名为 $(statefulset名称)-$(序号) 如下图所示:

 [root@master redis]# kubectl get pods -o wide NAME                                            READY     STATUS      RESTARTS   AGE       IP             NODE            NOMINATED NODE redis-app-0                                     1/1       Running     0          2h        172.17.24.3    192.168.0.144    redis-app-1                                     1/1       Running     0          2h        172.17.63.8    192.168.0.148    redis-app-2                                     1/1       Running     0          2h        172.17.24.8    192.168.0.144    redis-app-3                                     1/1       Running     0          2h        172.17.63.9    192.168.0.148    redis-app-4                                     1/1       Running     0          2h        172.17.24.9    192.168.0.144    redis-app-5                                     1/1       Running     0          2h        172.17.63.10   192.168.0.148    

如上,可以看到这些Pods在部署时是以{0…N-1}的顺序依次创建的。注意,直到redis-app-0状态启动后达到Running状态之后,redis-app-1 才开始启动。
同时,每个Pod都会得到集群内的一个DNS域名,格式为$(podname).$(service name).$(namespace).svc.cluster.local ,也即是:

 redis-app-0.redis-service.default.svc.cluster.local redis-app-1.redis-service.default.svc.cluster.local ...以此类推... 

在K8S集群内部,这些Pod就可以利用该域名互相通信。我们可以使用busybox镜像的nslookup检验这些域名:

 [root@master redis]# kubectl exec -ti busybox -- nslookup redis-app-0.redis-service Server:    10.0.0.2 Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local Name:      redis-app-0.redis-service Address 1: 172.17.24.3 

可以看到, redis-app-0的IP为172.17.24.3。当然,若Redis Pod迁移或是重启(我们可以手动删除掉一个Redis Pod来测试),IP是会改变的,但是Pod的域名、SRV records、A record都不会改变。

另外可以发现,我们之前创建的pv都被成功绑定了:

 [root@master redis]# kubectl get pv NAME      CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS    CLAIM                            STORAGECLASS   REASON    AGE nfs-pv1   200M       RWX            Retain           Bound     default/redis-data-redis-app-2                            3h nfs-pv3   200M       RWX            Retain           Bound     default/redis-data-redis-app-4                            3h nfs-pv4   200M       RWX            Retain           Bound     default/redis-data-redis-app-5                            3h nfs-pv5   200M       RWX            Retain           Bound     default/redis-data-redis-app-1                            3h nfs-pv6   200M       RWX            Retain           Bound     default/redis-data-redis-app-0                            3h nfs-vp2   200M       RWX            Retain           Bound     default/redis-data-redis-app-3                            3h 

5.初始化Redis集群

创建好6个Redis Pod后,我们还需要利用常用的Redis-tribe工具进行集群的初始化

创建Ubuntu容器
由于Redis集群必须在所有节点启动后才能进行初始化,而如果将初始化逻辑写入Statefulset中,则是一件非常复杂而且低效的行为。这里,本人不得不称赞一下原项目作者的思路,值得学习。也就是说,我们可以在K8S上创建一个额外的容器,专门用于进行K8S集群内部某些服务的管理控制。
这里,我们专门启动一个Ubuntu的容器,可以在该容器中安装Redis-tribe,进而初始化Redis集群,执行:

 kubectl run -it ubuntu --image=ubuntu --restart=Never /bin/bash 

我们使用阿里云的Ubuntu源,执行:

 root@ubuntu:/# cat > /etc/apt/sources.list << EOF deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse deb-src http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse deb-src http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse deb-src http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse deb-src http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse deb-src http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse > EOF 

成功后,原项目要求执行如下命令安装基本的软件环境:

 apt-get update apt-get install -y vim wget python2.7 python-pip redis-tools dnsutils 

初始化集群
首先,我们需要安装redis-trib

 pip install redis-trib==0.5.1 

然后,创建只有Master节点的集群:

 redis-trib.py create \ `dig +short redis-app-0.redis-service.default.svc.cluster.local`:6379 \ `dig +short redis-app-1.redis-service.default.svc.cluster.local`:6379 \ `dig +short redis-app-2.redis-service.default.svc.cluster.local`:6379 

其次,为每个Master添加Slave

 redis-trib.py replicate \ --master-addr `dig +short redis-app-0.redis-service.default.svc.cluster.local`:6379 \ --slave-addr `dig +short redis-app-3.redis-service.default.svc.cluster.local`:6379 redis-trib.py replicate \ --master-addr `dig +short redis-app-1.redis-service.default.svc.cluster.local`:6379 \ --slave-addr `dig +short redis-app-4.redis-service.default.svc.cluster.local`:6379 redis-trib.py replicate \ --master-addr `dig +short redis-app-2.redis-service.default.svc.cluster.local`:6379 \ --slave-addr `dig +short redis-app-5.redis-service.default.svc.cluster.local`:6379 

至此,我们的Redis集群就真正创建完毕了,连到任意一个Redis Pod中检验一下:

 [root@master redis]# kubectl exec -it redis-app-2 /bin/bash root@redis-app-2:/data# /usr/local/bin/redis-cli -c 127.0.0.1:6379> cluster nodes 5d3e77f6131c6f272576530b23d1cd7592942eec 172.17.24.3:6379@16379 master - 0 1559628533000 1 connected 0-5461 a4b529c40a920da314c6c93d17dc603625d6412c 172.17.63.10:6379@16379 master - 0 1559628531670 6 connected 10923-16383 368971dc8916611a86577a8726e4f1f3a69c5eb7 172.17.24.9:6379@16379 slave 0025e6140f85cb243c60c214467b7e77bf819ae3 0 1559628533672 4 connected 0025e6140f85cb243c60c214467b7e77bf819ae3 172.17.63.8:6379@16379 master - 0 1559628533000 2 connected 5462-10922 6d5ee94b78b279e7d3c77a55437695662e8c039e 172.17.24.8:6379@16379 myself,slave a4b529c40a920da314c6c93d17dc603625d6412c 0 1559628532000 5 connected 2eb3e06ce914e0e285d6284c4df32573e318bc01 172.17.63.9:6379@16379 slave 5d3e77f6131c6f272576530b23d1cd7592942eec 0 1559628533000 3 connected 127.0.0.1:6379> cluster info cluster_state:ok cluster_slots_assigned:16384 cluster_slots_ok:16384 cluster_slots_pfail:0 cluster_slots_fail:0 cluster_known_nodes:6 cluster_size:3 cluster_current_epoch:6 cluster_my_epoch:6 cluster_stats_messages_ping_sent:14910 cluster_stats_messages_pong_sent:15139 cluster_stats_messages_sent:30049 cluster_stats_messages_ping_received:15139 cluster_stats_messages_pong_received:14910 cluster_stats_messages_received:30049 127.0.0.1:6379> 

另外,还可以在NFS上查看Redis挂载的数据:

 [root@ftp pv3]# ll /usr/local/k8s/redis/pv3 total 12 -rw-r--r-- 1 root root  92 Jun  4 11:36 appendonly.aof -rw-r--r-- 1 root root 175 Jun  4 11:36 dump.rdb -rw-r--r-- 1 root root 794 Jun  4 11:49 nodes.conf 

6.创建用于访问Service

前面我们创建了用于实现StatefulSet的Headless Service,但该Service没有Cluster Ip,因此不能用于外界访问。所以,我们还需要创建一个Service,专用于为Redis集群提供访问和负载均衡:

 [root@master redis]# cat redis-access-service.yaml apiVersion: v1 kind: Service metadata: name: redis-access-service labels: app: redis spec: ports: - name: redis-port protocol: "TCP" port: 6379 targetPort: 6379 selector: app: redis appCluster: redis-cluster 

如上,该Service名称为 redis-access-service,在K8S集群中暴露6379端口,并且会对labels nameapp: redisappCluster: redis-cluster的pod进行负载均衡。

创建后查看:

 [root@master redis]#  kubectl get svc redis-access-service -o wide NAME                   TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)    AGE       SELECTOR redis-access-service   ClusterIP   10.0.0.64            6379/TCP   2h        app=redis,appCluster=redis-cluster 

如上,在K8S集群中,所有应用都可以通过10.0.0.64 :6379来访问Redis集群。当然,为了方便测试,我们也可以为Service添加一个NodePort映射到物理机上,这里不再详细介绍。

五、测试主从切换

在K8S上搭建完好Redis集群后,我们最关心的就是其原有的高可用机制是否正常。这里,我们可以任意挑选一个Master的Pod来测试集群的主从切换机制,如redis-app-0

 [root@master redis]# kubectl get pods redis-app-0 -o wide NAME          READY     STATUS    RESTARTS   AGE       IP            NODE            NOMINATED NODE redis-app-1   1/1       Running   0          3h        172.17.24.3   192.168.0.144    

进入redis-app-0查看:

 [root@master redis]# kubectl exec -it redis-app-0 /bin/bash root@redis-app-0:/data# /usr/local/bin/redis-cli -c 127.0.0.1:6379> role 1) "master" 2) (integer) 13370 3) 1) 1) "172.17.63.9" 2) "6379" 3) "13370" 127.0.0.1:6379> 

如上可以看到,app-0为master,slave为172.17.63.9redis-app-3

接着,我们手动删除redis-app-0

 [root@master redis]# kubectl delete pod redis-app-0 pod "redis-app-0" deleted [root@master redis]#  kubectl get pod redis-app-0 -o wide NAME          READY     STATUS    RESTARTS   AGE       IP            NODE            NOMINATED NODE redis-app-0   1/1       Running   0          4m        172.17.24.3   192.168.0.144    

我们再进入redis-app-0内部查看:

 [root@master redis]# kubectl exec -it redis-app-0 /bin/bash root@redis-app-0:/data# /usr/local/bin/redis-cli -c 127.0.0.1:6379> role 1) "slave" 2) "172.17.63.9" 3) (integer) 6379 4) "connected" 5) (integer) 13958 

如上,redis-app-0变成了slave,从属于它之前的从节点172.17.63.9redis-app-3

六、疑问

至此,大家可能会疑惑,那为什么没有使用稳定的标志,Redis Pod也能正常进行故障转移呢?这涉及了Redis本身的机制。因为,Redis集群中每个节点都有自己的NodeId(保存在自动生成的nodes.conf中),并且该NodeId不会随着IP的变化和变化,这其实也是一种固定的网络标志。也就是说,就算某个Redis Pod重启了,该Pod依然会加载保存的NodeId来维持自己的身份。我们可以在NFS上查看redis-app-1的nodes.conf文件:

 [root@k8s-node2 ~]# cat /usr/local/k8s/redis/pv1/nodes.conf 96689f2018089173e528d3a71c4ef10af68ee462 192.168.169.209:6379@16379 slave d884c4971de9748f99b10d14678d864187a9e5d3 0 1526460952651 4 connected237d46046d9b75a6822f02523ab894928e2300e6 192.168.169.200:6379@16379 slave c15f378a604ee5b200f06cc23e9371cbc04f4559 0 1526460952651 1 connected c15f378a604ee5b200f06cc23e9371cbc04f4559 192.168.169.197:6379@16379 master - 0 1526460952651 1 connected 10923-16383d884c4971de9748f99b10d14678d864187a9e5d3 192.168.169.205:6379@16379 master - 0 1526460952651 4 connected 5462-10922c3b4ae23c80ffe31b7b34ef29dd6f8d73beaf85f 192.168.169.198:6379@16379 myself,slave c8a8f70b4c29333de6039c47b2f3453ed11fb5c2 0 1526460952565 3 connected c8a8f70b4c29333de6039c47b2f3453ed11fb5c2 192.168.169.201:6379@16379 master - 0 1526460952651 6 connected 0-5461vars currentEpoch 6 lastVoteEpoch 4

如上,第一列为NodeId,稳定不变;第二列为IP和端口信息,可能会改变。

这里,我们介绍NodeId的两种使用场景:

当某个Slave Pod断线重连后IP改变,但是Master发现其NodeId依旧, 就认为该Slave还是之前的Slave。

当某个Master Pod下线后,集群在其Slave中选举重新的Master。待旧Master上线后,集群发现其NodeId依旧,会让旧Master变成新Master的slave。

对于这两种场景,大家有兴趣的话还可以自行测试,注意要观察Redis的日志。

以上就是在K8s上部署Redis集群的方法步骤的详细内容,更多请关注0133技术站其它相关文章!

赞(0) 打赏
未经允许不得转载:0133技术站首页 » 数据库