Python 蚁群算法详解

这篇文章主要介绍了Python编程实现蚁群算法详解,涉及蚂蚁算法的简介,主要原理及公式,以及Python中的实现代码,具有一定参考价值,需要的朋友可以了解下

在这里插入图片描述

蚁群算法简介

蚁群算法(Ant Clony Optimization, ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性。蚁群算法最早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。经过20多年的发展,蚁群算法在理论以及应用研究上已经得到巨大的进步。

蚁群算法是一种仿生学算法,是由自然界中蚂蚁觅食的行为而启发的。在自然界中,蚂蚁觅食过程中,蚁群总能够按照寻找到一条从蚁巢和食物源的最优路径。下图显示了这样一个觅食的过程。

在这里插入图片描述

在图(a)中,有一群蚂蚁,假如A是蚁巢,E是食物源(反之亦然)。这群蚂蚁将沿着蚁巢和食物源之间的直线路径行驶。假如在A和E之间突然出现了一个障碍物(图(b)),那么,在B点(或D点)的蚂蚁将要做出决策,到底是向左行驶还是向右行驶?由于一开始路上没有前面蚂蚁留下的 信息素(pheromone) ,蚂蚁朝着两个方向行进的概率是相等的。但是当有蚂蚁走过时,它将会在它行进的路上释放出信息素,并且这种信息素会议一定的速率散发掉。信息素是蚂蚁之间交流的工具之一。它后面的蚂蚁通过路上信息素的浓度,做出决策,往左还是往右。很明显,沿着短边的的路径上信息素将会越来越浓(图(c)),从而吸引了越来越多的蚂蚁沿着这条路径行驶。

TSP问题描述

蚁群算法最早用来求解TSP问题,并且表现出了很大的优越性,因为它分布式特性,鲁棒性强并且容易与其它算法结合,但是同时也存在这收敛速度慢,容易陷入局部最优(local optimal)等缺点。

TSP问题(Travel Salesperson Problem,即旅行商问题或者称为中国邮递员问题),是一种NP-hard问题,此类问题用一般的算法是很难得到最优解的,所以一般需要借助一些启发式算法求解,例如遗传算法(GA),蚁群算法(ACO),微粒群算法(PSO)等等。

TSP问题(旅行商问题)是指旅行家要旅行n个城市,要求各个城市经历且仅经历一次 然后回到出发城市,并要求所走的路程最短。

一个TSP问题可以表达为:求解遍历图G=(V,E,C),所有的节点一次并且回到起始节点,使得连接这些节点的路径成本最低。

蚁群算法原理

假如蚁群中所有蚂蚁的数量为m,所有城市之间的信息素用矩阵pheromone表示,最短路径为bestLength,最佳路径为bestTour。每只蚂蚁都有自己的内存,内存中用一个禁忌表(Tabu)来存储该蚂蚁已经访问过的城市,表示其在以后的搜索中将不能访问这些城市;还有用另外一个允许访问的城市表(Allowed)来存储它还可以访问的城市;另外还用一个矩阵(Delta)来存储它在一个循环(或者迭代)中给所经过的路径释放的信息素;还有另外一些数据,例如一些控制参数(α,β,ρ,Q),该蚂蚁行走玩全程的总成本或距离(tourLength),等等。假定算法总共运行MAX_GEN次,运行时间为t。

蚁群算法计算过程如下:

(1)初始化。

(2)为每只蚂蚁选择下一个节点。

(3)更新信息素矩阵。

(4)检查终止条件

如果达到最大代数MAX_GEN,算法终止,转到第(5)步;否则,重新初始化所有的蚂蚁的Delt矩阵所有元素初始化为0,Tabu表清空,Allowed表中加入所有的城市节点。随机选择它们的起始位置(也可以人工指定)。在Tabu中加入起始节点,Allowed中去掉该起始节点,重复执行(2),(3),(4)步。

(5)输出最优值

代码实现

 # -*- coding: utf-8 -*- import random import copy import time import sys import math import tkinter #//GUI模块 import threading from functools import reduce # 参数 ''' ALPHA:信息启发因子,值越大,则蚂蚁选择之前走过的路径可能性就越大 ,值越小,则蚁群搜索范围就会减少,容易陷入局部最优 BETA:Beta值越大,蚁群越就容易选择局部较短路径,这时算法收敛速度会 加快,但是随机性不高,容易得到局部的相对最优 ''' (ALPHA, BETA, RHO, Q) = (1.0,2.0,0.5,100.0) # 城市数,蚁群 (city_num, ant_num) = (50,50) distance_x = [ 178,272,176,171,650,499,267,703,408,437,491,74,532, 416,626,42,271,359,163,508,229,576,147,560,35,714, 757,517,64,314,675,690,391,628,87,240,705,699,258, 428,614,36,360,482,666,597,209,201,492,294] distance_y = [ 170,395,198,151,242,556,57,401,305,421,267,105,525, 381,244,330,395,169,141,380,153,442,528,329,232,48, 498,265,343,120,165,50,433,63,491,275,348,222,288, 490,213,524,244,114,104,552,70,425,227,331] #城市距离和信息素 distance_graph = [ [0.0 for col in range(city_num)] for raw in range(city_num)] pheromone_graph = [ [1.0 for col in range(city_num)] for raw in range(city_num)] #----------- 蚂蚁 ----------- class Ant(object): # 初始化 def __init__(self,ID): self.ID = ID                 # ID self.__clean_data()          # 随机初始化出生点 # 初始数据 def __clean_data(self): self.path = []               # 当前蚂蚁的路径 self.total_distance = 0.0    # 当前路径的总距离 self.move_count = 0          # 移动次数 self.current_city = -1       # 当前停留的城市 self.open_table_city = [True for i in range(city_num)] # 探索城市的状态 city_index = random.randint(0,city_num-1) # 随机初始出生点 self.current_city = city_index self.path.append(city_index) self.open_table_city[city_index] = False self.move_count = 1 # 选择下一个城市 def __choice_next_city(self): next_city = -1 select_citys_prob = [0.0 for i in range(city_num)]  #存储去下个城市的概率 total_prob = 0.0 # 获取去下一个城市的概率 for i in range(city_num): if self.open_table_city[i]: try : # 计算概率:与信息素浓度成正比,与距离成反比 select_citys_prob[i] = pow(pheromone_graph[self.current_city][i], ALPHA) * pow((1.0/distance_graph[self.current_city][i]), BETA) total_prob += select_citys_prob[i] except ZeroDivisionError as e: print ('Ant ID: {ID}, current city: {current}, target city: {target}'.format(ID = self.ID, current = self.current_city, target = i)) sys.exit(1) # 轮盘选择城市 if total_prob > 0.0: # 产生一个随机概率,0.0-total_prob temp_prob = random.uniform(0.0, total_prob) for i in range(city_num): if self.open_table_city[i]: # 轮次相减 temp_prob -= select_citys_prob[i] if temp_prob <0.0: next_city = i break # 未从概率产生,顺序选择一个未访问城市 # if next_city == -1: #     for i in range(city_num): #         if self.open_table_city[i]: #             next_city = i #             break if (next_city == -1): next_city = random.randint(0, city_num - 1) while ((self.open_table_city[next_city]) == False):  # if==False,说明已经遍历过了 next_city = random.randint(0, city_num - 1) # 返回下一个城市序号 return next_city # 计算路径总距离 def __cal_total_distance(self): temp_distance = 0.0 for i in range(1, city_num): start, end = self.path[i], self.path[i-1] temp_distance += distance_graph[start][end] # 回路 end = self.path[0] temp_distance += distance_graph[start][end] self.total_distance = temp_distance # 移动操作 def __move(self, next_city): self.path.append(next_city) self.open_table_city[next_city] = False self.total_distance += distance_graph[self.current_city][next_city] self.current_city = next_city self.move_count += 1 # 搜索路径 def search_path(self): # 初始化数据 self.__clean_data() # 搜素路径,遍历完所有城市为止 while self.move_count 

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注0133技术站的更多内容!

以上就是Python 蚁群算法详解的详细内容,更多请关注0133技术站其它相关文章!

赞(0) 打赏
未经允许不得转载:0133技术站首页 » python