Java编程线程间通信与信号量代码示例

这篇文章主要介绍了Java编程线程间通信与信号量代码示例,具有一定借鉴价值,需要的朋友可以参考下。

1.信号量Semaphore

先说说Semaphore,Semaphore可以控制某个资源可被同时访问的个数,通过acquire()获取一个许可,如果没有就等待,而release()释放一个许可。一般用于控制并发线程数,及线程间互斥。另外重入锁ReentrantLock也可以实现该功能,但实现上要复杂些。

功能就类似厕所有5个坑,假如有10个人要上厕所,那么同时只能有多少个人去上厕所呢?同时只能有5个人能够占用,当5个人中的任何一个人让开后,其中等待的另外5个人中又有一个人可以占用了。另外等待的5个人中可以是随机获得优先机会,也可以是按照先来后到的顺序获得机会。

单个信号量的Semaphore对象可以实现互斥锁的功能,并且可以是由一个线程获得了“锁”,再由另一个线程释放“锁”,这可应用于死锁恢复的一些场合。

例子:

 /** * @Description: * @param @param args * @return void 返回类型 */ public static void main(String[] args) { // 线程池 ExecutorService exec = Executors.newCachedThreadPool(); // 只能5个线程同时访问 final Semaphore semp = new Semaphore(5); // 模拟20个客户端访问 for (int index = 0; index <20; index++) { final int NO = index; Runnable run = new Runnable() { public void run() { try { // 获取许可 semp.acquire(); System.out.println("获得Accessing: " + NO); Thread.sleep((long) (Math.random() * 10000)); // 访问完后,释放 semp.release(); System.out.println("剩余可用信号-----------------" + semp.availablePermits()); } catch (InterruptedException e) { e.printStackTrace(); } } }; exec.execute(run); } // 退出线程池 exec.shutdown(); }

输出结果(可以想想为什么会这样输出):

 获得Accessing: 1 获得Accessing: 5 获得Accessing: 2 获得Accessing: 3 获得Accessing: 0 剩余可用信号-----------------1 获得Accessing: 4 剩余可用信号-----------------1 获得Accessing: 9 剩余可用信号-----------------1 获得Accessing: 8 剩余可用信号-----------------1 获得Accessing: 6 剩余可用信号-----------------1 获得Accessing: 10 剩余可用信号-----------------1 获得Accessing: 11 剩余可用信号-----------------1 获得Accessing: 12 剩余可用信号-----------------1 获得Accessing: 13 剩余可用信号-----------------1 获得Accessing: 7 剩余可用信号-----------------1 获得Accessing: 15 剩余可用信号-----------------1 获得Accessing: 16 剩余可用信号-----------------1 获得Accessing: 17 剩余可用信号-----------------1 获得Accessing: 14 剩余可用信号-----------------1 获得Accessing: 18 剩余可用信号-----------------1 获得Accessing: 19 剩余可用信号-----------------1 剩余可用信号-----------------2 剩余可用信号-----------------3 剩余可用信号-----------------4 剩余可用信号-----------------5

2.使用PIPE作为线程间通信桥梁

Pipe有一个source通道和一个sink通道。数据会被写到sink通道,从source通道读取。一进一出。先作为初步了解怎么使用。

值得注意的是该类在java.nio.channels下,说明该类属于nio方式的数据通信方式,那就使用Buffer来缓冲数据。

Pipe原理的图示:

Pipe就是个空管子,这个空管子一头可以从管子里往外读,一头可以往管子里写

操作流程:

1.首先要有一个对象往这个空管子里面写。写到哪里呢?这个空管子是有一点空间的,就在这个管子里。

写的时候就是写到管子本身包含的这段空间里的。这段空间大小是1024个字节。

2.然后另一个对象才能将这个装满了的管子里的内容读出来。

上代码

 package com.jx.test; import java.io.IOException; import java.nio.ByteBuffer; import java.nio.channels.Pipe; public class testPipe { /** * @Description: * @param @param args * @return void 返回类型 * @throws IOException */ public static void main(String[] args) throws IOException { // 创建一个管道 Pipe pipe = Pipe.open(); final Pipe.SinkChannel psic = pipe.sink(); // 要向管道写数据,需要访问sink通道 final Pipe.SourceChannel psoc = pipe.source(); // 从读取管道的数据,需要访问source通道 Thread tPwriter = new Thread() { public void run() { try { System.out.println("send....."); // 创建一个线程,利用管道的写入口Pipe.SinkChannel类型的psic往管道里写入指定ByteBuffer的内容 int res = psic.write(ByteBuffer .wrap("Hello,Pipe!测试通讯.....".getBytes("utf-16BE"))); System.out.println("send size:" + res); } catch (Exception e) { e.printStackTrace(); } } } ; Thread tPreader = new Thread() { public void run() { int bbufferSize = 1024 * 2; ByteBuffer bbuffer = ByteBuffer.allocate(bbufferSize); try { System.out.println("recive....."); // 创建一个线程,利用管道的读入口Pipe.SourceChannel类型的psoc将管道里内容读到指定的ByteBuffer中 int res = psoc.read(bbuffer); //数据未 System.out.println("recive size:"+res+" Content:" + ByteBufferToString(bbuffer)); } catch (Exception e) { e.printStackTrace(); } } } ; tPwriter.start(); tPreader.start(); } /** *ByteBuffer--> String的转换函数 */ public static String ByteBufferToString(ByteBuffer content) { if (content == null || content.limit() <= 0 || (content.limit() == content.remaining())) { System.out.println("不存在或内容为空!"); return null; } int contentSize = content.limit() - content.remaining(); StringBuffer resultStr = new StringBuffer(); for (int i = 0; i 

总结

以上就是本文关于Java编程线程间通信与信号量代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

以上就是Java编程线程间通信与信号量代码示例的详细内容,更多请关注0133技术站其它相关文章!

赞(0) 打赏
未经允许不得转载:0133技术站首页 » Java